Go to file
2020-07-02 00:05:57 +01:00
.github/ISSUE_TEMPLATE initial commit 2020-06-30 19:18:55 +01:00
dockerscripts initial commit 2020-06-30 19:18:55 +01:00
Screenshots initial commit 2020-06-30 19:18:55 +01:00
src 0.1.6 2020-07-01 23:52:57 +01:00
CHANGELOG.md 0.1.6 2020-07-01 23:52:57 +01:00
config.json Update config.json 2020-07-01 23:57:15 +01:00
Dockerfile 0.1.6 2020-07-01 23:52:57 +01:00
icon.png initial commit 2020-06-30 19:18:55 +01:00
LICENSE initial commit 2020-06-30 19:18:55 +01:00
logo.png initial commit 2020-06-30 19:18:55 +01:00
README.md Update README.md 2020-07-02 00:05:57 +01:00

Xiaomi Mi Scale Add On for Home Assistant

Add-On for HomeAssistant to read weight measurements from Xiaomi Body Scales.

Supported Scales:

Name Model Picture
Mi Smart Scale 2                                                                                               XMTZC04HM Mi Scale_2
Mi Body Composition Scale XMTZC02HM Mi Scale
Mi Body Composition Scale 2 XMTZC05HM Mi Body Composition Scale 2

Setup

  1. Retrieve the scale's MAC Address based on the Xiaomi Mi Fit app.

  2. Clone this repository git clone https://github.com/lolouk44/xiaomi_mi_scale_ha_add_on

  3. Create a new directory xiaomi_mi_scale in the folder addons in your Home Assistant installation and place all files in it via SSH / Samba

Add-On

  1. Open Home Assistant and navigate to add-on store and clock the reload button on the top right corner. Now you should see the Xiaomi Mi Scale as a local add-on Add-On Store

  2. Install the add-on (takes a while as the container is built locally)

  3. Edit the Configuration

Option Type Required Description
HCI_DEV string No Bluetooth hci device to use. Defaults to hci0
MISCALE_MAC string Yes Mac address of your scale
MQTT_PREFIX string No MQTT Topic Prefix. Defaults to miscale
MQTT_HOST string Yes MQTT Server (defaults to 127.0.0.1)
MQTT_USERNAME string No Username for MQTT server (comment out if not required)
MQTT_PASSWORD string No Password for MQTT (comment out if not required)
MQTT_PORT int No Defaults to 1883
TIME_INTERVAL int No Time in sec between each query to the scale, to allow other applications to use the Bluetooth module. Defaults to 30
MQTT_DISCOVERY bool No MQTT Discovery for Home Assistant Defaults to true
MQTT_DISCOVERY_PREFIX string No MQTT Discovery Prefix for Home Assistant. Defaults to homeassistant

Auto-gender selection/config -- This is used to create the calculations such as BMI, Water/Bone Mass etc... Up to 3 users possible as long as weights do not overlap!

Option Type Required Description
USER1_GT int Yes If the weight is greater than this number, we'll assume that we're weighing User #1
USER1_SEX string Yes male / female
USER1_NAME string Yes Name of the user
USER1_HEIGHT int Yes Height (in cm) of the user
USER1_DOB string Yes DOB (in yyyy-mm-dd format)
USER2_LT int No If the weight is less than this number, we'll assume that we're weighing User #2
USER2_SEX string No male / female
USER2_NAME string No Name of the user
USER2_HEIGHT int No Height (in cm) of the user
USER2_DOB string No DOB (in yyyy-mm-dd format)
USER3_SEX string No male / female
USER3_NAME string No Name of the user
USER3_HEIGHT int No Height (in cm) of the user
USER3_DOB string No DOB (in yyyy-mm-dd format)
  1. Start the add-on

Home-Assistant Setup:

Under the sensor block, enter as many blocks as users configured in your environment variables:

  - platform: mqtt
    name: "Example Name Weight"
    state_topic: "miScale/USER_NAME/weight"
    value_template: "{{ value_json['Weight'] }}"
    unit_of_measurement: "kg"
    json_attributes_topic: "miScale/USER_NAME/weight"
    icon: mdi:scale-bathroom

  - platform: mqtt
    name: "Example Name BMI"
    state_topic: "miScale/USER_NAME/weight"
    value_template: "{{ value_json['BMI'] }}"
    icon: mdi:human-pregnant

Mi Scale

Mi Scale

Acknowledgements:

Thanks to @syssi (https://gist.github.com/syssi/4108a54877406dc231d95514e538bde9) and @prototux (https://github.com/wiecosystem/Bluetooth) for their initial code

Special thanks to @ned-kelly for his help turning a "simple" python script into a fully fledged docker container

Thanks to @bpaulin for his PRs and collaboration